The search for fundamental particles is nothing new. Atomists of the Greek and Indian empires, like Democritus of fifth century B.C., openly wondered about the most finite components of our universe. Though dormant for centuries, curiosity about the atomic nature of matter was reinvigorated by Rutherford's gold foil experiment and the discovery of the nucleus. By the early 1930s, scientists believed they had fully determined the tiniest constituents of matter—in the form of the proton, neutron, and electron.
This would be only partially true. At present, scientists know that there are hundreds of particles not unlike our electron and nucleons, all making up what some have termed the particle zoo. While we are confident that the electron remains fundamental, it is surrounded by a plethora of similar sounding terms, like leptons, hadrons, baryons, and mesons. Even though not every particle is considered fundamental, they all play a vital role in understanding the intricate structure of our universe.
A fundamental particle is defined as a particle with no substructure and no finite size. According to the Standard Model, there are three types of fundamental particles: leptons, quarks, and carrier particles. As you may recall, carrier particles are responsible for transmitting fundamental forces between their interacting masses. Leptons are a group of six particles not bound by the strong nuclear force, of which the electron is one. As for quarks, they are the fundamental building blocks of a group of particles called hadrons, a group that includes both the proton and the neutron.
Now for a brief history of quarks. Quarks were first proposed independently by American physicists Murray Gell-Mann and George Zweig in 1963. Originally, three quark types-or flavors-were proposed with the names up (u), down (d), and strange (s).
At first, physicists expected that, with sufficient energy, we should be able to free quarks and observe them directly. However, this has not proved possible, as the current understanding is that the force holding quarks together is incredibly great and, much like a spring, increases in magnitude as the quarks are separated. As a result, when large energies are put into collisions, other particles are created-but no quarks emerge. With that in mind, there is compelling evidence for the existence of quarks.
By 1967, experiments at the SLAC National Accelerator Laboratory scattering 20-GeV electrons from protons produced results like Rutherford had obtained for the nucleus nearly 60 years earlier. The SLAC scattering experiments showed unambiguously that there were three point-like (meaning they had sizes considerably smaller than the probe's wavelength) charges inside the proton as seen in Figure 23.12. This evidence made all but the most skeptical admit that there was validity to the quark substructure of hadrons.
Scattering of high-energy electrons from protons at facilities like SLAC produces evidence of three point-like charges consistent
with proposed quark properties. This experiment is analogous to Rutherford's discovery of the small size of the nucleus by
scattering α particles. High-energy electrons are used so that the probe wavelength is small enough to see details smaller
than the proton.
The inclusion of the strange quark with Zweig and Gell-Mann's model concerned physicists. While the up and down quarks demonstrated fairly clear symmetry and were present in common fundamental particles like protons and neutrons, the strange quark did not have a counterpart of its own. This thought, coupled with the four known leptons at the time, caused scientists to predict that a fourth quark, yet to be found, also existed.
In 1974, two groups of physicists independently discovered a particle with this new quark, labeled charmed. This completed the second exotic quark pair, strange (s) and charmed (c). A final pair of quarks was proposed when a third pair of leptons was discovered in 1975. The existence of the bottom (b) quark and the top (t) quark was verified through experimentation in 1976 and 1995, respectively. While it may seem odd that so much time would elapse between the original quark discovery in 1967 and the verification of the top quark in 1995, keep in mind that each quark discovered had a progressively larger mass. As a result, each new quark has required more energy to discover.
One of the most confounding traits of quarks is their electric charge. Long assumed to be discrete, and specifically a multiple of the elementary charge of the electron, the electric charge of an individual quark is fractional and thus seems to violate a presumed tenet of particle physics. The fractional charge of quarks, which are ±(2/3) and ±(-/3), are the only structures found in nature with a nonintegral number of charge q. However, note that despite this odd construction, the fractional value of the quark does not violate the quantum nature of the charge. After all, free quarks cannot be found in nature, and all quarks are bound into arrangements in which an integer number of charge is constructed.
the six known quarks, in addition to their antiquark components, as will be discussed later in this section.
While the term flavor is used to differentiate between types of quarks, the concept of color is more analogous to the electric charge in that it is primarily responsible for the force interactions between quarks. Note-Take a moment to think about the electrostatic force. It is the electric charge that causes attraction and repulsion. It is the same case here but with a color charge. The three colors available to a quark are red, green, and blue, with antiquarks having colors of anti-red (or cyan), anti-green (or magenta), and anti-blue (or yellow).
Why use colors when discussing quarks? After all, the quarks are not actually colored with visible light. The reason colors are used is because the properties of a quark are analogous to the three primary and secondary colors mentioned above. Just as different colors of light can be combined to create white, different colors of quark may be combined to construct a particle like a proton or neutron. In fact, for each hadron, the quarks must combine such that their color sums to white. Recall that two up quarks and one down quark construct a proton. The sum of the three quarks' colors-red, green, and blue-yields the color white. This theory of color interaction within particles is called quantum chromodynamics, or QCD. As part of QCD, the strong nuclear force can be explained using color. In fact, some scientists refer to the color force, not the strong force, as one of the four fundamental forces.
A Feynman diagram showing the interaction between two quarks by using the transmission of a colored gluon. Note that the gluon is
also considered the charge carrier for the strong nuclear force.
Note that quark flavor may have any color. For instance, in the diagram above, the down quark has a red color and a green color. In other words, colors are not specific to a particle quark flavor.
Article source: OpenStax is a nonprofit educational technology initiative based at Rice University. OpenStax's mission is to improve educational access and learning for everyone. Textbooks on OpenStax's site are licensed under a Creative Commons Attribution 4.0 International License
.