Integrating Big Data Into Your Enterprise Analytics Systems
By Chandra Heitzman
Big Data offers enterprises the potential for predictive metrics and insightful statistics,
but these data sets are often so large that they defy traditional data warehousing and analysis
methods. However, if properly stored and analyzed, businesses can track customer habits, fraud,
advertising effectiveness, and other statistics on a scale previously unattainable. The challenge
for enterprises is not so much how or where to store the data, but how to meaningfully analyze
it for competitive advantage.
Big Data storage and Big Data analytics, while naturally related, are not identical.
Technologies associated with Big Data analytics tackle the problem of drawing meaningful
information with three key characteristics.
1. They concede that traditional data warehouses are too slow and too small-scale.
2. They seek to combine and leverage data from widely divergent data sources in both structured
and unstructured forms.
3. They acknowledge that the analysis must be both time- and cost-effective, even while deriving
from a legion of diverse data sources including mobile devices, the Internet, social networking,
and Radio-frequency identification (RFID).
The relative newness and desirability of Big Data analytics combine to make it a diverse
and emergent field. As such, one can identify four significant developmental segments: MapReduce,
scalable database, real-time stream processing, and Big Data appliance.
The open-source Hadoop uses the Hadoop Distributed File System (HDFS) and MapReduce together
to store and transfer data between computer nodes. MapReduce distributes data processing over
these nodes, reducing each computer's workload and enabling computations and analysis greater
than that of a single PC. Hadoop users usually assemble parallel computing clusters from commodity
servers and store the data either in a small disk array or solid-state drive format.
These are typically called "shared-nothing" architectures. They are considered more desirable than
storage-area networks (SAN) and network-attached storage (NAS) because they offer greater input⁄output
(IO) performance. Within Hadoop - available for free from Apache - there exist numerous commercial
incarnations such as SQL 2012, Cloudera, and more.
Not all Big Data is unstructured, and the open-source NoSQL uses a distributed and horizontally-scalable
database to specifically target streaming media and high-traffic websites. Again, many open-source
alternatives exist, with MongoDB and Terrastore residing among the favorites. Some enterprises
will also choose to use Hadoop and NoSQL in combination.
As the name suggests, real-time stream processing uses real-time analytics to provide
up-to-the-minute information about an enterprise's customers. StreamSQL is available through
numerous commercial avenues and has functioned adequately in this regard for financial, surveillance,
and telecommunications services since 2003.
Finally, Big Data "appliances" combine networking, server, and storage gear in order
to accelerate user data queries with analytics software. Vendors abound, and include IBM⁄Netazza,
Oracle, Terradata, and many others.
Enterprises seeking to edge out their rivals are looking to Big Data. Storage is only
the first part of the battle, and those than can efficiently analyze the new wealth of information
better than their competitors will almost certainly profit from it. These ambitious enterprises
would do well to regularly reassess their Big Data analytics methods, as the technological
landscape will change often and dramatically in the coming months and years.
For more information about big data and custom business intelligence solutions for the
enterprise, visit Magenic who
have been one of the leading software development companies providing innovative custom software
development to meet unique business challenges for some of the most recognized companies and
organizations in the nation.
More General Web Design: • The Ten Parts of a Business Website • Ten Tips for Choosing a Good Domain Name • How to Create an Amazing About Page • Excuse Me, May I Borrow Your Passwords? • DHTML or Flash? • Top Tips for Web Design • Design Your Website's Directory Structure • Creating an Effective Web Site • Define The Design of Your Website • Web Design Terms Defined
|